
30 The Delphi Magazine Issue 57

Life Without
Data-Aware Controls
by Philip Brown

Last year at DCon 99, I presented
a session Design Patterns for the

Real World and amongst the pat-
terns discussed was the Bridge
Pattern. The example shown was a
class that could populate a
TTreeView control given a concrete
implementation of an abstract
class designed to expose hierarchi-
cal data. It was shown that this
design was ultimately more flexible
and elegant than the established
way of using a data-aware TTree-
View variant. I passed comment
that I never use data-aware con-
trols, and that I was aware that this
put me in the minority!

Shortly afterwards, this session
was commented upon in One Last
Compile... (Issue 51, November
1999), and the author noted that
my assertions caused a sharp
intake of breath around the room.
This is not too surprising, as I was
challenging a very accepted, even
‘normal’, way of writing Delphi
applications, one which is fully
documented and encouraged in
many books, and supported by
many third-party components.
Fortunately, the author of the One
Last Compile... column noted that
by the end of the session I had gone
some way to justifying my com-
ments and that I had stirred up
some deep re-appraisals of how
Delphi programs could be imple-
mented. Such is the benefit of
attending conferences, and I’m
sure the Editor won’t object to me
noting that DCon 2000 is but a few
months away! [Not at all: don’t
forget to book your place soon! Ed.]

The assertion that data-aware
controls are flawed can be conten-
tious. Many people have used them
to write fully functional programs
that satisfy the requirements of
their users. If a development prin-
ciple works, why bother changing?
Many Delphi programmers who
have been tutored to rely upon
data-aware controls seem to be

suspicious of other possibilities. A
common reaction when the valid-
ity of relying upon data-aware con-
trols is questioned is a knee-jerk
response that it is in the manuals,
it’s quick and easy, and everyone
else does it, so it must be the best
way, right?

Data-aware controls are covered
in the Delphi manuals, but this
doesn’t mean that they’re neces-
sarily the best way of representing
database field values to the user.
After all, early versions of Delphi
promoted the use of ReportSmith
as a report generator, but I’m sure
that few developers still view this
as the ‘right’ way to do reports. It
may be worthwhile to consider
why data-aware controls exist. My
first experience of data-aware con-
trols as a concept was with Visual
Basic, before the advent of Delphi
1. Very quickly I (and many other
VB developers) grew to dislike
them intensely and forswore them
for all developments. Initially, this
was based on their extremely
buggy nature and lack of control,
but later on more subtle issues
became evident. When Delphi was
released I was very keen to see how
it interfaced the visual display to
the database, and was disap-
pointed to see that the concepts
had been slavishly copied from VB.
In truth, this may have had nothing
to do with the desires of the origi-
nal Delphi design team but rather
more to do with the target market
for Delphi, to win over developers
from VB (remember when Delphi
was marketed as ‘the VB killer’?) In
order to be instantly familiar to VB
developers, the basic concepts of
data-aware controls were imple-
mented wholesale in Delphi, sub-
stituting the BDE for the JET engine
as the database API layer with
which the controls interacted.

It is also possibly true that a
need to appeal to simplistic com-
petitive language ‘reviews’ also

drove Borland to mimic VB in this
way. At the time magazines were
very fond of putting up a number of
similar software products in a
‘group test’ and deciding upon a
winner. These very often boiled
down to a feature point checklist,
and if Delphi had lacked the
data-aware controls of VB it would
have been correspondingly
marked down. Delphi was being
sold as a Rapid Application Devel-
opment tool, and to the average
reviewer this basically meant ‘how
many mouse clicks does it take me
to get the data from my one data-
base table displayed on-screen’.
Assessing the quality, robustness
and durability of an application
produced with the tool had noth-
ing to do with the evaluation:
expedience was everything.

Although fundamentally better
implemented in Delphi, data-
aware controls in this language
share many of the disadvantages
of their VB forebears. Originally
there was one overriding reason
against using them, a rigid reliance
upon the BDE. Readers will remem-
ber the obscure chicanery (such
as patching DCU files) required to
use a non-BDE database with
Delphi 2. This was in stark contrast
to the rest of the elegant Delphi
architecture, and it was a very wel-
come improvement in Delphi 3
when a decent database-related
class hierarchy was introduced
with TDataSet. Despite the removal
of the reliance upon the BDE, there
are still a number of practical and
theoretical reasons why I prefer
not to use data-aware controls.

Taking A Stand
Data-aware controls basically sac-
rifice control for expedience. By
wholeheartedly accepting the
functionality that they provide it is
possible to get data in front of the
user very quickly. The strength of
this approach (getting data in front
of the user with minimum effort) is
also its weakness: it is very hard to
modify the behaviour and look and
feel of the application from that
which data-aware controls pro-
vide. Sometimes, as with very
small throwaway in-house sys-
tems, this is acceptable. For

May 2000 The Delphi Magazine 31

systems that must be deployed to
client sites there are a number of
drawbacks.

At a purist level, there are many
theoretical disadvantages to data-
aware controls. All of the propo-
nents of advanced Object Oriented
principles such as Grady Booch,
Peter Coad, Ed Yourdon et al agree
that a well-designed OO system
has a strong separation between
the user interface, business logic
and database interaction layers.
Many design patterns centre
around the proposition of separat-
ing data representation objects
from a presentation, keeping these
elements firmly decoupled. Figure
1 shows the recommended com-
munication pathways between
these layers: an arrow means that
an object in one layer can interro-
gate a property or call a method on
an object in another layer. A brief
analysis of this diagram shows that
the user interface (here repre-
sented by TForm objects) can call
methods on other forms and on the
objects representing the business
rules, but that objects represent-
ing business rules cannot call
methods on interface elements.
Business rules can be represented
as objects or as standard proce-
dural code within units.

The implications of this diagram
are wide-ranging and encompass
all aspects of application develop-
ment. You do not need to be doing
‘purist’ OO development to benefit
from the concepts represented
within it. For example, strongly
separating business rules and user
interface means that the only code
that can go behind buttons, menu
options and the like is code that
calls methods implemented in the
business rules and then updates
the user interface by interrogating
the state (properties) of objects
representing business. This rules
out forms that have massive
amounts of calculations and data-
base updates behind buttons. In
fact, by following the principles of
this diagram, the code within
forms becomes much more
focused on representing data visu-
ally and controlling interaction
with the user, and becomes corre-
spondingly easier to understand

and maintain.
Applications that
consist of a couple
of enormous form
units are a mainte-
nance nightmare
waiting to happen. Unfortunately, a
complete discussion of application
architecture will have to be the
topic of future articles!

Returning to the topic of this arti-
cle, there is an immediate implica-
tion in the diagram for data-aware
controls, the user interface cannot
communicate directly with the
data management layer, and this is
exactly what data-aware controls
do! Aside from the purist argu-
ments against this, there are many
practical reasons for not wanting
to do so. Simply exposing data
fields on-screen forces the inter-
face to enforce business rules
(such as two fields having related
values), and this logic is better rep-
resented elsewhere as it must be
enforced within any interface ele-
ment that exposes such fields. It is
true that for much of the time a
data field will store a value that can
be easily represented on-screen
(such as a customer name), but as
soon as any degree of control over
data entry is required the
data-aware world starts to work
against you rather than for you.

Trading control for expedience
has another side effect: your inter-
face (and maybe database design)
will be guided towards offering fea-
tures that map well onto a
data-aware control, rather than the
most appropriate interface ele-
ment or database type. An example
of this is the commonly encoun-
tered Address element. This is very
often coded as a number (usually 4
or 5) of separate data-aware edit
boxes named Address1 .. Address5
or things like House, Street, Town,
County, etc. The disadvantages of
this approach are that it doesn’t
cater well for exceptional
addresses (with many lines or with

individually long lines), and that
users rarely enter the data in such
a well-defined fashion (a 3-line
address may end up with the
county in the Town field). A better
approach is to design the address
component as a multi-line type
control (TMemo) and to store the
data in a database-friendly form
(such as TMemo.CommaText). This
allows the presentation to vary
from how it is stored, maximising
flexibility and control. At this
stage, data-aware proponents will
be thinking DBMemo. For simple
cases this can be utilised, but you
still have little control over how
the data is stored, and any control
you have must be replicated every
time the control is used. Another
example of a datatype with poor
support is sets. Sets can often be a
natural, expressive and compact
representation. Consider a data-
base that stores data about
people, in particular the pets they
own. Assuming we don’t need to
know anything about the pets
other than whether or not the
person owns one, this could be
represented with the type in
Listing 1.

This representation is the most
natural to use within business
logic, but few databases support
set type fields and there is no
set-oriented data-aware control. A

TFormTForm TFormTForm

Objects &Objects &
UnitsUnits

Objects &Objects &
UnitsUnits

TDatasetTDataset TDatasetTDataset

User InterfaceUser Interface

Business RulesBusiness Rules

Data ManagementData Management

➤ Figure 1:
Interactions
between
application
functional layers.

TPet = (Dog, Cat, Rabbit, Mouse,
Gerbil, Budgie, ...);

TPets = set of TPet;
type
TPerson = class
private
FPets: TPets;

public
property Pets: TPets
read FPets write FPets;

end;

➤ Listing 1

32 The Delphi Magazine Issue 57

small amount of work is required
to translate this type into a stan-
dard database field, but this
should only need to be imple-
mented once and called from wher-
ever it is required. In the data-
aware world, lacking a set control,
the developer would typically shy
away from the natural representa-
tion and probably use a more cum-
bersome array of Boolean fields
(represented using TDBCheckBox).

This last example shows another
aspect of using data-aware con-
trols: if not all data types can be
easily represented using standard
data-aware versions then the inter-
face becomes an eclectic mix of
standard and data-aware variants.
The population and handling of
these controls becomes quite dis-
tinct (one being implicit within
property values and the other
explicit in code) and co-ordinating
the two requires complex event
handlers to intercept, and if neces-
sary interrupt, standard data-
aware mechanisms. Sacrificing
control for instant programmer
gratification is beginning to
become inconvenient.

Ugly Applications
Another objection to data-aware
controls is their appearance and
usability, both of which are some-
what lacking. The nature of most
data-aware applications is immedi-
ately apparent due to the prolifera-
tion of DBNavigator controls and
data-aware grids. The simple fact is
that these are interface elements
only seen in these type of applica-
tions, there are extremely few
examples of grids of any type
appearing in the Windows OS,
Microsoft products and most com-
mercial applications. Simply by
using data-aware controls you are
making your application different
from most examples in the
marketplace.

The DBNavigator control is also
not very user-friendly because of
its intensely record-based nature.
Admittedly, the learning curve
associated with it for the user is
not immense, but why not use an
interface style that is more
descriptive, natural, and in keeping
with other Windows applications?

Generally, the interface paradigm
that is used throughout Windows
is for the user to select to Add or
Edit a new object. This brings up a
dialog showing the properties for
that object, to which changes are
made before finally confirming or
cancelling the action. Although
this interface style is possible
using data-aware controls, most
developers go for the simple
option of slapping a data-aware
grid in the client area of a form and
letting the user make in-place
edits, controlling the whole pro-
cess with the DBNavigator. This is in
direct contrast with the rest of
Windows, and most commercial
applications.

Once this approach is taken,
most developers quickly wish for
more functionality from their
data-aware grids, as the one pro-
vided with Delphi offers little sup-
port for in-place editing of any data
types other than strings. In these
situations they hunt around for a
third party alternative, for which
they do not have to look too far.
Virtually every single component
pack contains an all-singing, all-
dancing data-aware grid, and the
Delphi component websites are
awash with freeware or shareware
alternatives. Rather than exhibit
the strengths of data-awareness,
this shows the major limitation.
When the standard functionality is
insufficient, it is necessary to
search for a complete replace-
ment. By sacrificing control, you
have placed yourself entirely
beholden to the features that your
choice of component offers. When
these are inadequate, there are few
options available without whole-
sale changes to the application.

Another area in which an appli-
cation that uses data-aware con-
trols has little control is in direct
interaction with the database. The
data access pattern will be
dictated by the implementation of
the control and this may have a
large impact on database perfor-
mance. Some implementations of
data-aware grids effectively
prepare a recordset based on
selecting the entire contents of a
table, even if these records are
sent to the client a block at a time.

At the server database level,
having a ‘live’ (updatable) query
open can affect the performance
and concurrency of future transac-
tions. As the numbers of users
increases, this can impact
noticeably.

A common approach to a prop-
erty sheet type dialog with data-
aware controls is to allow the com-
ponents to make updates to data-
base fields as the user changes the
displayed values, and then to
commit the transaction when the
OK button is pressed, or to force a
rollback if Cancel is pressed.
Although this might seem like
‘free’ functionality (it takes little
code on behalf of the programmer,
and the net result is effective), the
actual impact at the database level
is that the server will be perform-
ing unnecessary transactions. All
this extra network and database
traffic can be avoided by assuming
control over the database
updates: this requires a little more
effort on behalf of developers, but
the benefits are far greater
concurrency and efficiency of
bandwidth utilisation.

One of the biggest drawbacks to
data-aware controls is the implicit
nature of data access: a DBEdit box
will contain the name of a database
field that will be displayed. This is
little more than a string value and
should the name, type or size of
the field change then the reference
will be out of date, and will most
likely cause a runtime error. In the
event of such a field change, the
only way to correct all occur-
rences is to check every single
form for such a reference. Over the
lifetime of even a medium sized
application, such oversights are
bound to occur.

What’s The Alternative
To implement an application with-
out using data-aware controls it is
necessary to consider how they
are used, and sometimes to
re-evaluate how to design the
system. Data-aware controls can
be categorised into two distinct
types: ones that handle a set (list)
of data and ones that handle a
single element. Examples of the
former would be grids and

May 2000 The Delphi Magazine 33

listboxes, the latter would include
edit and checkbox components. So
that applications can conform to
the user interface style within Win-
dows, I tend to have a property
sheet type dialog for each main ele-
ment in the system. An ‘element’ in
this situation could be an object
representing some part of the busi-
ness rules (a ‘problem domain’ or
business object), or in a less
object-oriented application it
could be something like a TDataSet
descendant. Implementing these

property sheets is a one-off pro-
cess that happens quite early on in
the lifetime of the application.
Obviously, these dialogs will be
updated and maintained as proper-
ties or fields are added to the ele-
ments they represent, but the
essential factor is that there is a
single property sheet dialog for
each main element within the
system. These dialogs will be refer-
enced from many places through-
out the application, and provide a
standard way of viewing and
updating the details for an object.

To demonstrate how such a
dialog can be implemented we
shall consider a worked example
for a database record represent-
ing a customer, and details about
the orders they have placed. A
quick examination of any Win-
dows property type dialog shows
a standard dialog as shown in
Figure 2, this example is the
date/time Control Panel applet.
The general layout is a page con-
trol with OK, Cancel and Apply but-
tons aligned with the right margin
of the page control. Many more

such examples can be found within
Windows, and indeed other appli-
cations.

We will use a similar approach
for all of our property sheet
dialogs. In addition, I like to add a
largish label and a 32x32 icon to
each tab on the page control. This
adds a pleasant graphical embel-
lishment to the form (without
descending into the anarchy of
gradient controls and customised
colour schemes), and if the same
icon image is used to represent
such objects throughout the
system then it can assist the user
to understanding what they are
looking at. Some Microsoft
BackOffice components use a simi-
lar approach to their property
sheets.

As all of our property sheets will
have a similar presentation, it
seems sensible to use Delphi’s
visual form inheritance (VFI). VFI
is a real boost to application
consistency and productivity, and
no other Windows development
language does it anything like as
well. For more information on this

➤ Figure 2: Standard Windows
property sheet dialog.

36 The Delphi Magazine Issue 57

feature, see Guy Smith-Ferrier’s
articles in Issues 55 and 56. Using
VFI has the benefit of enforcing a
consistent way of programming
and, as Guy noted, if you decide to
change some of the fundamentals
of how the form behaves (such
as advancing to the next control
when Enter is pressed), applying
this once to the ancestor form
causes all descendants to behave
similarly.

In order to create a new base
property sheet dialog, create a new
form and drop a page control onto
it. Add a new page to this control,
and on this new page add a TImage
resized to 32x32 and a TLabel along-
side it that should be right aligned
and have the font changed to some-
thing a little larger, say Arial or
Tahoma 16 point. I’ve added a
default icon to the image control
but in general a descendant form
would update it with something
more appropriate. The form could
also have the BorderStyle changed
to bsSingle and the BorderIcons
property to [biSystemMenu,
biHelp] to make it similar to other
such forms within Windows. Note
that there’s nothing stopping us
increasing (or decreasing) the size
of this form for our descendants as
best suits the particular object
being edited.

We now need to consider exactly
how we are going to support data-
base operations, now that we are
going to avoid using data-aware
controls. An obvious way of doing
this is to populate the visual com-
ponents once, just before the form
is displayed, and to update the
database if the OK button is
pressed. The advantage of this
approach is that there are two

relatively simple database opera-
tions going on (a SELECT to popu-
late the form and an UPDATE to
populate the database), without
keeping a live recordset open in
the meantime. This benefits data-
base concurrency and availability.
There are very many variations on
this situation (the dialog could be
passed a recordset as a parameter
and it could assume the ‘current’
record, or the dialog could be
passed an object which can be
assumed to be pre-populated). The
essence is that there is a single pro-
cess to populate visual compo-
nents from a supplied data source.
The disadvantage of this approach
is that there is (currently) no con-
trol over other users editing or
updating the same object. Note,
however, that by using the form
inheritance we can implement
such features ourselves relatively
easily. Using this approach it is
possible to lock the database
record using database locks or a
field reserved for this purpose, or
to do read-around-write type data
control when the OK or Apply but-
tons are pressed. This is a small
amount of code to write but we
have been able to take complete
control over arbitration to data
and know that it is the same
throughout the application. At this
stage it’s worth pointing out that it
is accepted that the current design
is breaking the theoretical rules
against the interface interacting
with the data management layer
directly. To overcome this it is nec-
essary to move towards a more
advanced object oriented design in
which the concept of recordsets is
totally encapsulated within the
data management layer. In this sit-
uation we would pass in an object
representing a business object
(conceptually a class-oriented
wrapper around a database
record) to our property sheet
dialog. Sadly, such a purist
approach is beyond the scope of
this article.

It is actually possible to provide
a base property sheet dialog that
is completely neutral to the object

that is being edited. Our dialog will
simply be passed a TObject that
needs to be edited; because the
base dialog provides only inter-
face functionality it does not actu-
ally need to know more than this
about the class(es) it will edit. Of
course, any descendant forms will
need to have a very exact knowl-
edge about what they are editing
(whether it is a TDataSet type
object, or a custom instance repre-
senting an application-specific
business object) but they will
simply be able to typecast the
object appropriately.

Rather than use a single instance
of the property sheet dialog, each
time we attempt to edit an object, a
new form will be dynamically con-
structed. To facilitate this process
our base dialog exposes a new Edit
class function:

class function Edit(
ObjectToEdit: TObject):
TModalResult;

It can be seen that as far as our
base property sheet dialog is con-
cerned, anything can be passed in
to it. The customised handling of
this is left entirely to the descen-
dant forms, a powerful example of
polymorphism. This routine does
little more than create a form of its
own type and returns the result
from ShowModal to determine if the
OK or Cancel buttons were
ultimately pressed. A form con-
structor is virtual and therefore
calling Self.Create results in the
descendant form being con-
structed rather than our base
property sheet dialog itself,
remember that in class methods
Self refers to the class type rather
than the object instance.

At this stage our base property
sheet dialog looks something like
Figure 3. Not very exciting, but
we’ll soon change that. Let’s look
at the implementation of how the
form is populated from the data.
The first thing to consider is how
this is going to happen. A simple
dialog would have an appropriate
component for each property we
want to update, and these could be
populated from the object passed
to the form (be it a recordset or

➤ Figure 3: A base property
sheet dialog.

May 2000 The Delphi Magazine 37

business object). In more complex
examples, however, we might have
a number of tabs on the page con-
trol, and some of these might be
quite complicated to update. A
very common example would be to
show related data in the classic
master/detail type approach. In
our customer example this would
be to show the list of orders that
the customer has ever made.
Rather than clutter up the dialog
and create a very complex tab with
both the customer details (name,
address etc.) and the master/detail
order information, it is better to
split the data across two tabs. The
first will be simple data showing
the customer name and the second
will display the lists of orders the
customer has ever placed. This has
a number of benefits. Firstly, it
keeps the dialog simple to use and

understand for the user. If they are
not bombarded by information
they will find it easier to compre-
hend the dialog. Secondly, it has
the advantage that we can delay
populating the second tab until the
first time that the user looks at it.
This can have a major performance
benefit: nine times out of ten, when
a property sheet is displayed the
user will only want to view or edit
the basic information. The query to
select the data to populate the
order listing for the customer
might be complicated, or might
return a lot of rows (or both): far
better only to issue this query
when we know it is needed. By con-
trast, the classic master/detail
form incurs this overhead each
time it is displayed.

Implementing this populate-on-
demand approach is very simple.
The page control generates an
OnChange event just before the page
is displayed, so we can intercept

this event and make a call to a
virtual function (overridden by
our descendants) that causes the
page to be populated. We only
want to do this the first time each
page is accessed so our base prop-
erty sheet dialog provides an
IsLoaded property indexed by
TTabSheet that returns a Boolean.
This is made available to descen-
dant classes in the protected sec-
tion in case they are interested in
knowing which tabs have been dis-
played or not. The implementation
of IsLoaded is relatively trivial and
simply requires the base dialog to
know which forms have been
loaded. The implementation pre-
sented here uses a bit in a 4-byte
Integer to represent each tab’s
PageIndex property. This has the
capacity to handle up to 32 sepa-
rate tabs on each property sheet; if
you need more than this then the
implementation must be changed
but I really can’t imagine what a

unit PropertySheet;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, ComCtrls;

type
TfrmPropertySheet = class(TForm)
pgcDetails: TPageControl;
tabDetails: TTabSheet;
btnApply: TButton;
btnCancel: TButton;
btnOK: TButton;
imgDetails: TImage;
lblDetails: TLabel;
procedure pgcDetailsChange(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure btnOKClick(Sender: TObject);
procedure btnApplyClick(Sender: TObject);

private
LoadedTabs: Integer;
EditObject: TObject;
function GetIsLoaded (TabSheet: TTabSheet): Boolean;
procedure SetIsLoaded (TabSheet: TTabSheet;
Value: Boolean);

procedure SaveDetails;
protected
// Allow control over page loading
property IsLoaded [TabSheet: TTabSheet]: Boolean
read GetIsLoaded write SetIsLoaded default False;

// Override these methods to populate pages
procedure LoadTab (TabSheet: TTabSheet; ObjectToLoad:
TObject); virtual; abstract;

procedure SaveTab (TabSheet: TTabSheet; ObjectToSave:
TObject); virtual; abstract;

public
class function Edit (ObjectToEdit: TObject):
TModalResult;

end;
implementation
{$R *.DFM}
function TfrmPropertySheet.GetIsLoaded (TabSheet:
TTabSheet): Boolean;

begin
// Use bitwise operator for speed and compactness
Result :=
(LoadedTabs and (1 shl TabSheet.PageIndex) <> 0);

end;
procedure TfrmPropertySheet.SetIsLoaded (TabSheet:
TTabSheet; Value: Boolean);

begin
if Value <> IsLoaded[TabSheet] then
LoadedTabs := LoadedTabs xor (1 shl TabSheet.PageIndex);

end;
class function TfrmPropertySheet.Edit(ObjectToEdit:
TObject): TModalResult;

var
dlgPropertySheet: TfrmPropertySheet;

begin
dlgPropertySheet := Self.Create (nil);
try
dlgPropertySheet.Icon.Assign(
dlgPropertySheet.imgDetails.Picture.Icon);

dlgPropertySheet.EditObject := ObjectToEdit;
Result := dlgPropertySheet.ShowModal;

finally
dlgPropertySheet.Free;

end;
end;
procedure TfrmPropertySheet.SaveDetails;
var
ThisPage: Integer;

begin
for ThisPage := 0 to pgcDetails.PageCount - 1 do begin
if IsLoaded [pgcDetails.Pages[ThisPage]] then begin
SaveTab (pgcDetails.Pages[ThisPage], EditObject);

end;
end;

end;
// Events
procedure TfrmPropertySheet.pgcDetailsChange(Sender:
TObject);

begin
if not IsLoaded [pgcDetails.ActivePage] then begin
// Populate controls
LoadTab (pgcDetails.ActivePage, EditObject);
IsLoaded[pgcDetails.ActivePage] := True;
// Reset focus to first control on tab
pgcDetails.ActivePage.SetFocus;
SendMessage (Handle, WM_NEXTDLGCTL, 0, 0);

end;
end;
procedure TfrmPropertySheet.FormShow (Sender: TObject);
begin
pgcDetailsChange (Sender);

end;
procedure TfrmPropertySheet.btnOKClick(Sender: TObject);
begin
SaveDetails;
ModalResult := mrOK;

end;
procedure TfrmPropertySheet.btnApplyClick(Sender: TObject);
begin
SaveDetails;
btnApply.Enabled := False;
btnOK.Enabled := True;
btnCancel.Enabled := False;
btnCancel.Cancel := False;
btnOK.Caption := 'Close';

end;
end.

➤ Listing 2: Implementation of a
base property sheet dialog.

38 The Delphi Magazine Issue 57

property sheet with 32 tabs would
look like!

The OnChange event handler
ensures that the first time each tab
is displayed a call is made to an
abstract method that requires the
custom dialog to populate the
appropriate tab. Each descendant
form of our property sheet dialog
must therefore override this
method and perform any task nec-
essary. The general format of this
method is a set of statements that
detect the specific tab passed in
(remember, this routine will be
called a number of times at
non-determinate intervals) and
then react accordingly. In order to
populate the visual components,
the descendant form will need to
typecast the object passed to the
Edit method to a known type, and
then update the visual compo-
nents from the object. If the object
to be edited was a TDataSet type
then this would take the form of
accessing named field values. If the
object was something better quali-
fied, like a business object (say
TCustomer), then the visual compo-
nents would be updated directly
from the object properties. A simi-
lar process happens when the OKor
Applybuttons are pressed: for each
tab that has been loaded a call is
made to another abstract method
that requires the descendant form
to update the object from the
visual components. Listing 2
shows the complete implementa-
tion of our base property sheet
dialog.

Let us consider our twin-tabbed
TCustomer example. First, add the
base property sheet dialog to a

new project (or ensure that it
has been added to your Reposi-
tory). Then, select New from the
Delphi File menu, and select
the property sheet form. On the
form that results, add a new tab
to the page control, and copy
and paste the label and image
from the first tab to the second.
Rename these to reflect the fact
that this tab will be displaying a
list of orders for the customer.

On the first tab, add a series of ordi-
nary edit boxes, labels and a memo
to represent the basic customer
details. When you have finished,
the first tab will look something
like that shown in Figure 4.

In order to populate these con-
trols from the object we must over-
ride the LoadTab method as shown
in Listing 3. Here the example
chosen was for a TDataSet type
object, note that the example given
works equally well irrespective of
the specific type of TDataSet
passed.

Calling the Edit method on the
customer details class now dis-
plays the dialog, and the user can
change any values to their heart’s
content. I have chosen to use the
standard visual components in this
example, but more functional vari-
ants can of course be used, as long
as they are not data-aware!

It is easy to see how we have full
control over all aspects of data
entry in a consistent manner, and
that this display and control is
completely independent of the
data source. This can be demon-
strated by upgrading the customer
example to use a specific TCustomer
type object rather than a TDataSet.
In this instance we would pass in
a TCustomer instance to the Edit

method on the form, but this time
rather than populate the visual
components from named fields,
we would use named properties.
This has the particular advantage
that the names and the types of the
TCustomer properties are known at
compile time, and therefore any
attempt to compile an application
with invalid references to proper-
ties will fail. This has huge ramifi-
cations for application quality:
simply by compiling an applica-
tion you know that you will not get
any runtime errors due to incor-
rect property names or types
embedded in any forms.

Whenever the user presses the
Apply or OK buttons a routine is
called in our base dialog that
makes a series of calls to another
abstract method requiring the
dialog to save the details, again
once for each tab that has been
loaded. The implementation of
this routine is easy, it’s a question
of copying and pasting the code
from the LoadTab method and
reversing the assignments. This
process will either update the
recordset field values, or the
object properties (depending on
what type of object is being
edited). In order to force the
values through to the database it
will be necessary to do a Post on
the TDataSet, save the business
object using whatever mechanism
it provides, or construct an SQL
query to perform the update. If
your application can make
assumptions about the type of
object being edited then it is possi-
ble to create an intermediate
descendant of our property sheet
dialog that is customised to handle
objects of a known generic type,
performing these updates auto-
matically. This has obvious

➤ Figure 4: Customer property
sheet dialog.

procedure TdlgCustomerDetails.LoadTab(TabSheet: TTabSheet;
ObjectToLoad: TObject);

begin
with ObjectToLoad as TDataSet do begin
if TabSheet = tabDetails then begin
edtName.Text := FieldByName ('Name').AsString;
mmoAddress.CommaText := FieldByName ('Address').AsString;
edtPostcode.Text := FieldByName ('Postcode').AsString;
edtTelephone.Text := FieldByName ('Telephone').AsString;

end else if TabSheet = tabOrders then begin
// Populate orders tab…

end;
end;

end;

➤ Listing 3

40 The Delphi Magazine Issue 57

benefits from a code centralisation
point of view. Using this approach
it is possible to reduce each spe-
cific details dialog to contain just
the code necessary to populate the
components from the object and
vice versa, and to control any input
from the user.

Avoiding Gridlock
We have seen how to implement a
property sheet type dialog that
allows the user to view or edit a
number of values related to a
single object. In order to be able to
view these properties, the user
must have had some way of select-
ing the specific object, and typi-
cally this will happen by choosing
one from a list of many.

The traditional data-aware solu-
tion is to use a grid and, as previ-
ously mentioned, these very often
support in-place editing. Per-
sonally, I avoid using grids on two
counts: they are not used within
standard Windows or Microsoft
applications and they are not intu-
itive for a user to use. The editing
options (and control) they support
are weak, and the scroll bars are
typically not proportional to the
amount of data displayed on
screen, compared with the amount
of data available.

Instead, we could use the com-
ponent that Windows uses exten-
sively for displaying lists of values:
the TListView with ViewStyle set to
vsReport. This highly functional
component has a very pleasing

appearance, and has become ubiq-
uitous within Windows and other
applications, virtually replacing
the listbox (a listbox can be viewed
as a single column listview, with
the column headers hidden). The
one advantage that the listbox has
over a listview is that it can be pop-
ulated with data much more
quickly than a listview, although
this becomes apparent only when
dealing with hundreds of items.
Generally this is not a major issue,
as few users will appreciate being
required to hunt for a specific
entry within a list of a thousand:
needles and haystacks spring to
mind. I’m not sure whether the
overheads associated with the
listview are related to the Delphi
wrapper or the underlying Win32
common control, but Delphi 5
made some welcome improve-
ments in listview handling perfor-
mance over previous versions.
When populating the listview with
a number of items it’s always
worthwhile surrounding the task
with calls to BeginUpdate and
EndUpdate on the TListView.Items
property: this suppresses many
costly internal events.

The listview can be customised
at design-time, defining the col-
umns and so on in the usual way. Of
course, you can use more func-
tional listview variants if you
choose: I generally use one that
does intelligent sorts when a
column header is clicked, and
changes a particular column width
as the component is resized. Useful
defaults for such listviews are to
enable RowSelect and ReadOnly.

At runtime the listview must be
populated with data. In a similar
way to how the property sheet
dialog works, I favour a static pop-
ulation of the listview as a one-off
process, and then allow the user to
interact with this list. This will typi-
cally be to select an entry to edit
(which brings up an appropriate
property sheet dialog), to delete
an entry from the list or to add a
new entry to the list. Deleting an
entry is obviously simple, and new
entries are catered for by creating
a new blank object (this could be a
new record in the dataset, or a
freshly created business object)
and then editing it using the prop-
erty sheet dialog. A ModalResult of
mrOK causes the object to be saved
(inserted into the database).

There are a number of ways to
populate the listview. The essence
will be a loop through each avail-
able object in a given list, this
could be records in a dataset or a
series of business objects. It is
very simple to provide a standard
method, possibly on the listview
itself, that adds items increm-
entally from a given source. This
could look something like that
shown in Listing 4, although many
variations are possible. One par-
ticularly elegant variation would
be to have a generic LoadList rou-
tine that can populate a listview
from any source of data, be it a
TDataSet, a list of business objects
or any other set of entities. This
would be achieved by applying the
Bridge design pattern. In this
instance we would define an
abstract class to allow navigation
through a set of objects, and then
provide concrete implementa-
tions to handle specific examples
of TDataSets and so on. These
advanced concepts may need to
be the topic of a future article!

This may seem like a lot of work,
but in essence it only needs to be
done once. All of these concepts
are application-independent and
can be applied many times over.
These approaches are certainly
more powerful and flexible than
the standard data-aware variants.
With the rest of the Delphi VCL and
RTL being so well designed, I
suspect that had Visual Basic not

procedure LoadList(ListView: TListView; DataSet: TDataSet;
Fields: array of String);

var Index: Integer;
begin
Screen.Cursor := crHourGlass;
ListView.Items.BeginUpdate;
try
ListView.Items.Clear;
DataSet.First;
while not DataSet.EOF do begin
with ListView.Items.Add do begin
Caption := Fields[0];
for Index := 1 to High (Fields) do begin
SubItems.Add (DataSet.FieldByName (Index).AsString);

end;
end;
DataSet.Next;

end;
finally
Screen.Cursor := crDefault;
ListView.Items.EndUpdate;

end;
end;
...
LoadList (lvwOrders, OrderDataSet, ['Date', 'Price', 'Description']);

➤ Listing 4: A generic routine
to populate a listview.

May 2000 The Delphi Magazine 41

prejudiced the world with
data-aware controls, the actual
implementation of data and inter-
face integration within Delphi
would have been more along these
lines.

Figure 5 shows the Orders tab of
our customer property sheet
dialog, together with some exam-
ple purchases. This interface style
is much more consistent with
Windows as a whole, and is more

immediately accessible to
a user, as there are
explicit buttons to assist
with each maintenance
task (adding, editing and
deleting entries).

Conclusion
We’ve discussed data-
aware controls and their
limitations. An alternative
way of allowing users to
interact with data has

been explored and a base property
sheet type dialog has been demon-
strated. All record-oriented data-
base updates can now be handled
in a more consistent manner. The
application is now more similar to
other Windows applications in
look and feel, and centralised code
offers opportunities to signifi-
cantly enhance the behaviour of all
such forms. In particular, we’ve
wrested back control over data

access and visual representation,
and we’ve provided some signifi-
cant benefits in database utilisa-
tion and concurrency, increasing
the responsiveness of complex
forms by only populating those
components that the user wishes
to view. The amount of code
required for specific forms is
small, and is much clearer and
easier to maintain than the interde-
pendent event handlers necessary
when working in the traditional
data-aware fashion.

Data-aware controls are a very
expedient way to start writing an
application, but for systems of any
size the alternatives offer signifi-
cant benefits that should be fully
evaluated.

Philip Brown is a senior consultant
with Informatica Consultancy &
Development, specialising in OO
systems design and training.
When not orienting objects he en-
joys sampling fine wine. Contact
him at phil@informatica.uk.com

➤ Figure 5: An example
of an alternative to a
data-aware grid.

	Taking A Stand
	Ugly Applications
	What’s The Alternative
	Avoiding Gridlock
	Conclusion

